it-swarm-id.com

Semua Kemungkinan Kombinasi daftar Nilai

Saya memiliki daftar bilangan bulat dalam program C # saya. Namun, saya tahu jumlah item yang saya miliki di daftar saya hanya pada saat runtime.

Katakanlah, demi kesederhanaan, daftar saya adalah {1, 2, 3} Sekarang saya perlu membuat semua kombinasi yang mungkin sebagai berikut . {1, 2, 3} {1, 2} {1, 3} {2, 3} {1} {2} {3}

Adakah yang bisa membantu dengan ini?

30
Sach

coba ini:

static void Main(string[] args)
{

    GetCombination(new List<int> { 1, 2, 3 });
}

static void GetCombination(List<int> list)
{
    double count = Math.Pow(2, list.Count);
    for (int i = 1; i <= count - 1; i++)
    {
        string str = Convert.ToString(i, 2).PadLeft(list.Count, '0');
        for (int j = 0; j < str.Length; j++)
        {
            if (str[j] == '1')
            {
                Console.Write(list[j]);
            }
        }
        Console.WriteLine();
    }
}
62
ojlovecd

Berikut adalah dua generik solusi untuk daftar yang sangat diketik yang akan mengembalikan semua kombinasi unik anggota daftar (jika Anda dapat menyelesaikan ini dengan kode yang lebih sederhana, saya salut kepada Anda):

// Recursive
public static List<List<T>> GetAllCombos<T>(List<T> list)
{
  List<List<T>> result = new List<List<T>>();
  // head
  result.Add(new List<T>());
  result.Last().Add(list[0]);
  if (list.Count == 1)
    return result;
  // tail
  List<List<T>> tailCombos = GetAllCombos(list.Skip(1).ToList());
  tailCombos.ForEach(combo =>
  {
    result.Add(new List<T>(combo));
    combo.Add(list[0]);
    result.Add(new List<T>(combo));
  });
  return result;
}

// Iterative, using 'i' as bitmask to choose each combo members
public static List<List<T>> GetAllCombos<T>(List<T> list)
{
  int comboCount = (int) Math.Pow(2, list.Count) - 1;
  List<List<T>> result = new List<List<T>>();
  for (int i = 1; i < comboCount + 1; i++)
  {
    // make each combo here
    result.Add(new List<T>());
    for (int j = 0; j < list.Count; j++)
    {
      if ((i >> j) % 2 != 0)
        result.Last().Add(list[j]);
    }
  }
  return result;
}

// Example usage
List<List<int>> combos = GetAllCombos(new int[] { 1, 2, 3 }.ToList());
11
jaolho

Berikut adalah solusi umum menggunakan rekursi

public static ICollection<ICollection<T>> Permutations<T>(ICollection<T> list) {
    var result = new List<ICollection<T>>();
    if (list.Count == 1) { // If only one possible permutation
        result.Add(list); // Add it and return it
        return result;
    }
    foreach (var element in list) { // For each element in that list
        var remainingList = new List<T>(list);
        remainingList.Remove(element); // Get a list containing everything except of chosen element
        foreach (var permutation in Permutations<T>(remainingList)) { // Get all possible sub-permutations
            permutation.Add(element); // Add that element
            result.Add(permutation);
        }
    }
    return result;
}

Saya tahu ini adalah pos lama, tetapi seseorang mungkin menganggap ini berguna.

10
Sindorej

Jawaban ini menggunakan algoritma yang sama dengan ojlovecd dan (untuk solusi berulangnya) jaolho. Satu-satunya hal yang saya tambahkan adalah opsi untuk memfilter hasil untuk jumlah minimum item dalam kombinasi. Ini dapat bermanfaat, misalnya, jika Anda hanya tertarik pada kombinasi yang mengandung setidaknya dua item.

Sunting: Seperti yang diminta oleh @ user3610374 filter untuk jumlah item maksimum telah ditambahkan.

Sunting 2: Seperti yang disarankan oleh @stannius algoritma telah diubah untuk membuatnya lebih efisien untuk kasus-kasus di mana tidak semua kombinasi diinginkan.

  /// <summary>
  /// Method to create lists containing possible combinations of an input list of items. This is 
  /// basically copied from code by user "jaolho" on this thread:
  /// http://stackoverflow.com/questions/7802822/all-possible-combinations-of-a-list-of-values
  /// </summary>
  /// <typeparam name="T">type of the items on the input list</typeparam>
  /// <param name="inputList">list of items</param>
  /// <param name="minimumItems">minimum number of items wanted in the generated combinations, 
  ///                            if zero the empty combination is included,
  ///                            default is one</param>
  /// <param name="maximumItems">maximum number of items wanted in the generated combinations,
  ///                            default is no maximum limit</param>
  /// <returns>list of lists for possible combinations of the input items</returns>
  public static List<List<T>> ItemCombinations<T>(List<T> inputList, int minimumItems = 1, 
                                                  int maximumItems = int.MaxValue)
  {
     int nonEmptyCombinations = (int)Math.Pow(2, inputList.Count) - 1;
     List<List<T>> listOfLists = new List<List<T>>(nonEmptyCombinations + 1);

     // Optimize generation of empty combination, if empty combination is wanted
     if (minimumItems == 0)
        listOfLists.Add(new List<T>());

     if (minimumItems <= 1 && maximumItems >= inputList.Count)
     {
        // Simple case, generate all possible non-empty combinations
        for (int bitPattern = 1; bitPattern <= nonEmptyCombinations; bitPattern++)
           listOfLists.Add(GenerateCombination(inputList, bitPattern));
     }
     else
     {
        // Not-so-simple case, avoid generating the unwanted combinations
        for (int bitPattern = 1; bitPattern <= nonEmptyCombinations; bitPattern++)
        {
           int bitCount = CountBits(bitPattern);
           if (bitCount >= minimumItems && bitCount <= maximumItems)
              listOfLists.Add(GenerateCombination(inputList, bitPattern));
        }
     }

     return listOfLists;
  }

  /// <summary>
  /// Sub-method of ItemCombinations() method to generate a combination based on a bit pattern.
  /// </summary>
  private static List<T> GenerateCombination<T>(List<T> inputList, int bitPattern)
  {
     List<T> thisCombination = new List<T>(inputList.Count);
     for (int j = 0; j < inputList.Count; j++)
     {
        if ((bitPattern >> j & 1) == 1)
           thisCombination.Add(inputList[j]);
     }
     return thisCombination;
  }

  /// <summary>
  /// Sub-method of ItemCombinations() method to count the bits in a bit pattern. Based on this:
  /// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetKernighan
  /// </summary>
  private static int CountBits(int bitPattern)
  {
     int numberBits = 0;
     while (bitPattern != 0)
     {
        numberBits++;
        bitPattern &= bitPattern - 1;
     }
     return numberBits;
  }
7
RenniePet

Solusi lain menggunakan Linq dan rekursi ...

static void Main(string[] args)
    {
        List<List<long>> result = new List<List<long>>();

        List<long> set = new List<long>() { 1, 2, 3, 4 };

        GetCombination<long>(set, result);

        result.Add(set);

        IOrderedEnumerable<List<long>> sorted = result.OrderByDescending(s => s.Count);

        sorted.ToList().ForEach(l => { l.ForEach(l1 => Console.Write(l1 + " ")); Console.WriteLine(); });
    }

    private static void GetCombination<T>(List<T> set, List<List<T>> result)
    {
        for (int i = 0; i < set.Count; i++)
        {
            List<T> temp = new List<T>(set.Where((s, index) => index != i));

            if (temp.Count > 0 && !result.Where(l => l.Count == temp.Count).Any(l => l.SequenceEqual(temp)))
            {
                result.Add(temp);

                GetCombination<T>(temp, result);
            }
        }
    }
3
Roko Prč

Pertama, diberikan satu set elemen n, Anda menghitung semua kombinasi elemen k dari itu (nCk). Anda harus mengubah nilai k dari 1 ke n untuk memenuhi kebutuhan Anda.

Lihat ini codeproject artikel untuk kode C # untuk menghasilkan kombinasi.

Jika Anda tertarik untuk mengembangkan algoritme kombinasi sendiri, periksa pertanyaan SO ini di mana ada banyak tautan ke materi yang relevan.

2
VinayC
public class CombinationGenerator{
    private readonly Dictionary<int, int> currentIndexesWithLevels = new Dictionary<int, int>();
    private readonly LinkedList<List<int>> _combinationsList = new LinkedList<List<int>>();
    private readonly int _combinationLength;

    public CombinationGenerator(int combinationLength)
    {
        _combinationLength = combinationLength;
    }

    private void InitializeLevelIndexes(List<int> list)
    {
        for (int i = 0; i < _combinationLength; i++)
        {
            currentIndexesWithLevels.Add(i+1, i);
        }
    }

    private void UpdateCurrentIndexesForLevels(int level)
    {
        int index;
        if (level == 1)
        {
            index = currentIndexesWithLevels[level];
            for (int i = level; i < _combinationLength + 1; i++)
            {
                index = index + 1;
                currentIndexesWithLevels[i] = index;
            }
        }
        else
        {
            int previousLevelIndex;
            for (int i = level; i < _combinationLength + 1; i++)
            {
                if (i > level)
                {
                    previousLevelIndex = currentIndexesWithLevels[i - 1];
                    currentIndexesWithLevels[i] = previousLevelIndex + 1;
                }
                else
                {
                    index = currentIndexesWithLevels[level];
                    currentIndexesWithLevels[i] = index + 1;
                }
            }
        }
    }

    public void FindCombinations(List<int> list, int level, Stack<int> stack)
    {
        int currentIndex;
        InitializeLevelIndexes(list);
        while (true)
        {
            currentIndex = currentIndexesWithLevels[level];
            bool levelUp = false;          
            for (int i = currentIndex; i < list.Count; i++)
            {
                if (level < _combinationLength)
                {
                    currentIndex = currentIndexesWithLevels[level];
                    MoveToUpperLevel(ref level, stack, list, currentIndex);
                    levelUp = true;
                    break;
                }
                levelUp = false;
                stack.Push(list[i]);
                if (stack.Count == _combinationLength)
                {
                    AddCombination(stack);
                    stack.Pop();
                }                                                                                 
            }

            if (!levelUp)
            {
                MoveToLowerLevel(ref level, stack, list, ref currentIndex);
                while (currentIndex >= list.Count - 1)
                {
                    if (level == 1)
                    {
                        AdjustStackCountToCurrentLevel(stack, level);
                        currentIndex = currentIndexesWithLevels[level];
                        if (currentIndex >= list.Count - 1)
                        {
                            return;
                        }
                        UpdateCurrentIndexesForLevels(level);
                    }
                    else
                    {
                        MoveToLowerLevel(ref level, stack, list, ref currentIndex);
                    }
              }
          }                               
       }
    }

    private void AddCombination(Stack<int> stack)
    {
        List<int> listNew = new List<int>();
        listNew.AddRange(stack);
        _combinationsList.AddLast(listNew);
    }

    private void MoveToUpperLevel(ref int level, Stack<int> stack, List<int> list, int index)
    {
        stack.Push(list[index]);
        level++;
    }

    private void MoveToLowerLevel(ref int level, Stack<int> stack, List<int> list, ref int currentIndex)
    {
        if (level != 1)
        {
            level--;
        }
        AdjustStackCountToCurrentLevel(stack, level);
        UpdateCurrentIndexesForLevels(level);
        currentIndex = currentIndexesWithLevels[level];
    }

    private void AdjustStackCountToCurrentLevel(Stack<int> stack, int currentLevel)
    {
        while (stack.Count >= currentLevel)
        {
            if (stack.Count != 0)
                stack.Pop();
        }
    }

    public void PrintPermutations()
    {
        int count = _combinationsList.Where(perm => perm.Count() == _combinationLength).Count();
        Console.WriteLine("The number of combinations is " + count);
    }

}
1
Bahruz Balabayov
protected List<List<T>> AllCombos<T>(Func<List<T>, List<T>, bool> comparer, params T[] items)
    {
        List<List<T>> results = new List<List<T>>();
        List<T> workingWith = items.ToList();
        results.Add(workingWith);
        items.ToList().ForEach((x) =>
        {
            results.Add(new List<T>() { x });
        });
        for (int i = 0; i < workingWith.Count(); i++)
        {
            T removed = workingWith[i];
            workingWith.RemoveAt(i);
            List<List<T>> nextResults = AllCombos2(comparer, workingWith.ToArray());
            results.AddRange(nextResults);
            workingWith.Insert(i, removed);
        }
        results = results.Where(x => x.Count > 0).ToList();
        for (int i = 0; i < results.Count; i++)
        {
            List<T> list = results[i];
            if (results.Where(x => comparer(x, list)).Count() > 1)
            {
                results.RemoveAt(i);
            }
        }

        return results;
    }

    protected List<List<T>> AllCombos2<T>(Func<List<T>, List<T>, bool> comparer, params T[] items)
    {
        List<List<T>> results = new List<List<T>>();
        List<T> workingWith = items.ToList();
        if (workingWith.Count > 1)
        {
            results.Add(workingWith);
        }
        for (int i = 0; i < workingWith.Count(); i++)
        {
            T removed = workingWith[i];
            workingWith.RemoveAt(i);
            List<List<T>> nextResults = AllCombos2(comparer, workingWith.ToArray());
            results.AddRange(nextResults);
            workingWith.Insert(i, removed);
        }
        results = results.Where(x => x.Count > 0).ToList();
        for (int i = 0; i < results.Count; i++)
        {
            List<T> list = results[i];
            if (results.Where(x => comparer(x, list)).Count() > 1)
            {
                results.RemoveAt(i);
            }
        }

        return results;
    }

Ini bekerja untuk saya, itu sedikit lebih kompleks dan benar-benar mengambil fungsi callback pembanding, dan sebenarnya 2 fungsi, bedanya adalah bahwa AllCombos menambahkan daftar item tunggal secara eksplisit. Ini sangat mentah dan pasti bisa dipangkas tetapi menyelesaikan pekerjaan. Setiap saran refactoring dipersilahkan. Terima kasih,

1
user1883961

Bagaimana dengan

static void Main(string[] args)
{
     Combos(new [] { 1, 2, 3 });
}

static void Combos(int[] arr)
{
    for (var i = 0; i <= Math.Pow(2, arr.Length); i++)
    {
        Console.WriteLine();
        var j = i;
        var idx = 0;
        do 
        {
            if ((j & 1) == 1) Console.Write($"{arr[idx]} ");
        } while ((j >>= 1) > 0 && ++idx < arr.Length);
    }
}
0
SDK

Kita dapat menggunakan rekursi untuk masalah kombinasi/permutasi yang melibatkan string atau integer.

public static void Main(string[] args)
{
    IntegerList = new List<int> { 1, 2, 3, 4 };

    PrintAllCombination(default(int), default(int));
}

public static List<int> IntegerList { get; set; }

public static int Length { get { return IntegerList.Count; } }

public static void PrintAllCombination(int position, int prefix)
{
    for (int i = position; i < Length; i++)
    {
        Console.WriteLine(prefix * 10 + IntegerList[i]);
        PrintAllCombination(i + 1, prefix * 10 + IntegerList[i]);
    }

}
0
Nans

Versi yang sedikit lebih umum untuk Linq menggunakan C # 7. Di sini menyaring berdasarkan item yang memiliki dua elemen.

static void Main(string[] args)
{
    foreach (var vals in Combos(new[] { "0", "1", "2", "3" }).Where(v => v.Skip(1).Any() && !v.Skip(2).Any()))
        Console.WriteLine(string.Join(", ", vals));
}

static IEnumerable<IEnumerable<T>> Combos<T>(T[] arr)
{
    IEnumerable<T> DoQuery(long j, long idx)
    {
        do
        {
            if ((j & 1) == 1) yield return arr[idx];
        } while ((j >>= 1) > 0 && ++idx < arr.Length);
    }
    for (var i = 0; i < Math.Pow(2, arr.Length); i++)
        yield return DoQuery(i, 0);
}
0
SDK